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Abstract

Opportunistic pathogens inhabiting premise (i.e., building) plumbing (OPPPs, e.g., L. 
pneumophila, M. avium complex, P. aeruginosa, Acanthamoeba, and N. fowleri) are a significant 

and growing source of disease. Because OPPPs establish and grow as part of the native drinking 

water microbiota, they do not correspond to fecal indicators, presenting a significant challenge to 

common and effective monitoring strategies. Further, different OPPPs present distinct 

requirements for sampling, preservation, and analysis, creating a significant impediment to their 

parallel detection. The aim of this critical review is to synthesize the state of the science of 

monitoring OPPPs and to identify a path forward for their simultaneous detection and 

quantification in a manner commensurate with the need for reliable data to inform risk assessment 

and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample 

representativeness and detection sensitivity, are critically evaluated with respect to the five 

representative bacterial and amoebal OPPPs noted above. Available culturing and molecular 

approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge 

gaps and research needs are identified.

1. Introduction

Premise plumbing refers to the portion of potable water distribution systems beyond the 

property line and in buildings (NRC, 2006), which includes both hot water and cold water 

lines and devices such as water heaters, showers, faucets and filters (Figure 1). Premise 

plumbing is generally characterized as a wet, warm, periodically stagnant environment with 
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low disinfectant residual and high surface area, which creates ideal conditions for microbial 

growth. Accordingly, opportunistic pathogens can become established in premise plumbing 

as part of the native microbiota, thereby presenting a major challenge for detection and 

monitoring since they violate the paradigm of traditional fecal indicator bacteria. As OPPPs 

are now the primary source of drinking water-related disease outbreaks, particularly in 

developed countries (CDC, 2013; Anaissie et al., 2002; Craun et al., 2010; Pruden et al., 

2013), there is an urgent need for reliable detection and monitoring strategies. In particular, 

simultaneous monitoring of multiple OPPPs in a manner conducive to risk assessment and 

mitigation, as well as to support research seeking to advance a fundamental understanding of 

their behavior in premise plumbing and inform better control measures, would be ideal.

Here we focus on a representative cross section of OPPPs, including bacterial species such 

as Legionella pneumophila, nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa 
and protozoans such as Acanthamoeba spp. and Naegleria fowleri. Among these, Legionella 
pneumophila, and other Legionella spp. that cause Legionnaires’ disease, have attracted the 

most attention as they cause a deadly form of pneumonia and account for the greatest 

proportion of OPPP-associated outbreak in the U.S., with an increasing incidence (CDC, 

2011; Hubbs, 2014). NTM is comprised of several pathogenic strains of mycobacteria that 

cause chronic pulmonary disease in an estimated 30,000 people in the United States. 

(Winthrop et al., 2010), first noticed in immunocompromised populations but also affecting 

groups with other less-obvious risk factors (e.g., slender elderly women) (Falkinham, 2009). 

P. aeruginosa is especially problematic as an agent of nosocomial (hospital-acquired) 

infection, particularly neonates and burn patients, causing about 1400 deaths each year in the 

United States (Anaissie et al., 2002). Acanthamoeba can cause severe eye infections (i.e., 

keratitis) and granulomatous amebic encephalitis, the former being associated with poor 

contact lens hygiene (Kilvington et al., 2004). Naegleria fowleri is the only pathogenic 

species of the genus, known also as the “brain-eating amoeba,” causing the rare but highly 

fatal disease, primary amebic meningoencephalitis (PAMs) (Yoder et al., 2012). Of these, L. 
pneumophila, Mycobacterium avium and N. fowleri have been included on the drinking 

water contaminant candidate list 3 (CCL3) (EPA, 2009). A major impediment to advancing 

further policy action towards public health protection from OPPPs is the challenge that they 

pose to monitoring.

There is currently no consensus with respect to methodologies or protocols for monitoring 

OPPPs, particularly when seeking simultaneous detection. From a policy standpoint, a major 

obstacle is that existing microbiological monitoring practices focus on the main distribution 

system and do not extend across the property line, where conditions are particularly 

susceptible to the multiplication of OPPPs (NRC, 2006). This is problematic because insight 

is needed into the relationship between the municipal water characteristics and the potential 

for regrowth of OPPPs, as has recently been illustrated in the case of corrosive water being 

associated with a Legionnaire’s outbreak in Flint, MI (Schwake et al., 2016). From a 

practical standpoint, premise plumbing is extremely complex and can differ greatly between 

buildings, including diverse fixture types and materials, pipe surface to volume ratios, and 

water temperatures (NRC, 2006). Flow conditions within pluming can also vary dramatically 

from one point to another depending on the building layout (Inkinen et al., 2014). All these 

factors result in heterogeneity within and between premise plumbing environments, making 
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it difficult to identify common sampling plans that are representative of the actual 

contamination by OPPPs and risk for disease transmission. Finally, OPPPs themselves are 

characterized by complex microbial ecology and physiology, which has led towards highly 

specific protocols that are not necessarily compatible for monitoring of multiple OPPPs.

This work presents a critical review of various sampling and methodological approaches 

employed for monitoring OPPPs. Advantages, limitations, and applicability of current 

monitoring methodologies are discussed in the context of their value and potential for 

informing prevention and mitigation of risk, outbreak response, and research. Key 

knowledge gaps and urgent research needs are identified that must be addressed to improve 

the science and practice of OPPPs monitoring.

2. Sampling Premise Plumbing and Sample Handling

Given the complexity of premise plumbing, key components of sampling considerations 

include site selection and sampling frequency, sample type (i.e., biofilm, water) and size, and 

flow patterns (e.g., first-flush, post flush). Moreover, sample handling before analytical 

testing, such as sample preservation, transport, and pretreatment (e.g., concentration) can 

also impact the recovery efficiency of targeted OPPPs.

2.1 Site Selection and Sampling Frequency

2.1.1 Site Selection—Currently, there are no generally accepted protocols for choosing 

sampling sites or frequency for OPPPs (Lucas et al., 2011). The selection of sampling sites 

for routine monitoring of L. pneumophila in healthcare facilities and in response to 

outbreaks has been described most extensively (Barbaree et al., 1987; Allegheny County 

Health Department, 2014; U.K. Department of Health, 2006; FRML, 2010; VHA, 2014). 

Sampling points are chosen based on vulnerability of certain sectors of the building to 

pathogen proliferation (e.g., dead-ends or areas with infrequent use) (U.K. Deaprtment of 

Health, 2006) as well as the susceptibility of the occupants to exposure risks (e.g., frequently 

occupied areas, intensive care, neonatal, and burn units) (ASHRAE, 2015; FRMHS, 2010). 

To gain a full systems perspective, recommended sampling sites for Legionella in healthcare 

facilities have included incoming water mains, water softeners, holding tanks, water heaters 

(at the inflows and outflows), faucets, and shower heads (Figure 1, CDC, 2015). Importantly, 

OPPPs commonly prefer warmer water and may be spread via aerosols (e.g., Legionella), 

rather than ingestion, making hot water systems particularly important monitoring targets. A 

minimal sample number has been required in some scenarios, e.g., sampling at least 10 

outlets on the hot and cold water distribution system respectively for each building was 

endorsed by the U.S. Veterans’ Health Administration (VHA, 2014). Another guideline 

published by U.K. Department of Health suggests that samples should at least be taken from 

the cold water storage, the most distal outlet from the tank, the water heater flow (or the 

closest and furthest tap to the heater and associated recirculating systems), and drain valves, 

when available (U.K. Deaprtment of Health, 2006). Monitoring temperature and disinfectant 

levels of cold and/or hot water systems is a practical approach to identify points that are 

susceptible to OPPP colonization and candidates for testing. For example, the warmest point 

in a cold water system, or the coolest part of a hot water system are likely to pose the 
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greatest risk to Legionella growth (U.K. Environmental Agency, 2005; U.K. Deaprtment of 

Health, 2006). Regardless, a detailed knowledge of water system layout together with a 

thorough understanding of conditions that are conducive to OPPP growth is essential to 

developing a sampling plan (ASHRAE, 2015).

Routine Legionella monitoring of non-healthcare related plumbing is generally not 

mandatory, except in France, where operators of all public buildings are required to 

complete regular monitoring for Legionella for any hot water distribution system (FRMHS, 

2010). In general, cold water systems should not require routine monitoring for Legionella 
unless temperatures and stagnation times are elevated in the system (e.g., >25 °C, dead ends, 

storage tanks). However, it cannot be said that there is zero risk of Legionella contamination 

in cold water systems. In a cold water tap survey across the United States, nearly half the 

taps showed the presence of L. pneumophila sg1 in one sampling event, and 16% of taps 

were positive in more than one sampling event (Donohue et al., 2014). In Germany, a survey 

of German public buildings revealed 5.4 % of cold water samples to exceed the action value 

for Legionella (Volker et al., 2010). In hot water systems, it is recommended to sample water 

heaters set at low temperatures (e.g., <50° C), header tanks, water softeners, water heater 

drain-off points, and affected taps (pre-flush, post-flush) (U.K. Environmental Agency, 

2005). For residential surveys of L. pneumophila, it has been recommended that at least 3 of 

5 of the following sites be sampled: hot water tank, kitchen tap, bathroom tap, showerhead, 

and bath tub outlet (Stout et al., 1992).

Sampling plans are an essential aspect of responding to Legionella outbreaks, with the aim 

of identifying all potential sources of contamination and modeling exposures. Cold water 

systems should be sampled at the incoming supply, the outlet of each reservoir, and outlets 

closest/furthest to the reservoir. Hot water system should also be thoroughly investigated, 

including showers and taps used by infected people with Legionnaires’ disease or in 

proximal areas. Any other sources of exposure, including those susceptible of generating 

aerosols, also need to be considered: ice machines, evaporative cooling systems, spa pools, 

humidifier, decorative fountains, etc. (U.K. Environment Agency, 2005).

Published guidelines concerning sampling site selection strategies for OPPPs other than 

Legionella are scarce. A recently published health technical memorandum by U.K. 

Department of Health briefly suggested that water outlets supplying water for patients 

(direct and indirect contact) and staff hand-washing should be sampled for P. aeruginosa in 

augmented care units (U.K. Department of Health, 2013). With regard to NTM and 

amoebae, for which there is no surveillance guideline for their monitoring in premise 

plumbing, recent studies generally followed standard methods for microbiological tests or 

sampling guidelines. Taps and showers were the frequent targets (Falkinham, 2011; Feazel et 

al., 2009; Ichijo et al., 2014; Kilvington et al., 2004; Thomas et al., 2006), with cisterns, 

filters, garden hoses and ice machines also sampled in some cases (Covert et al., 1999; 

Falkinham, 2010, 2011; Thomas et al., 2014). In an epidemiological and environmental 

investigation of a PAM death, a garden hose, service line hose bib, and toilet tank were also 

included in household samples, all of which were positive for Naegleria fowleri (Cope et al., 

2015).
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2.1.2 Sampling Frequency—There is no universal direction with regard to when and 

how often to sample premise plumbing for microbiological analysis. Monthly, quarterly, 

semi-annual and annual samplings have been proposed for testing of Legionella and/or P. 
aeruginosa (U.K. Department of Health, 2013; Regierung, 2001; FRML, 2010; VHA, 2014). 

The U.S. VHA requires quarterly testing of their buildings’ hot and cold water distribution 

systems for L. pneumophila (VHA, 2014); while annual sampling of hot water systems is 

generally recommended by German health care centers and residential monitoring programs 

(Regierung, 2001). Sampling selected taps every 6 months is suggested for P. aeruginosa 
monitoring in augmented care units in the U.K. However, more frequent tests or further 

engineering survey might be needed in case of positive test results or clinical-evidenced 

suspicion of contamination (U.K. Department of Health, 2013). Sampling frequency can 

also differ based on water usages. For example, it has been suggested to perform 1 

microbiological control per year per 100 beds, with a minimum of 4 controls per year for a 

healthcare facility in terms of monitoring P. aeruginosa and total coliforms in water for 

general use; while monthly monitoring of HPC, total coliforms, L. pneumophila, P. 
aeruginosa, and Staphylococcus aureus is required for water used for spa, bath and showers 

(FRMHS, 2005). Sampling frequency is also associated with temperature variation and 

disinfectant levels in the plumbing. Daily or monthly temperature control has been 

prescribed for healthcare buildings in many European countries, a fundamental strategy for 

controlling Legionella exposure risks (U.K. Department of Health, 2006; FRMHS, 2005).

The reality is that any given sampling event does not capture the true dynamics of OPPPs in 

the system. A study examining the variability of L. pneumophila in 84 taps over 5 

consecutive days in an Italian hospital revealed significant variation of the bacterial load 

from day to day, although the pattern was similar across the wards monitored (Napoli et al., 

2009). Thus, repeated samplings might be required in order to gain sufficient statistical 

power, especially when the data are for the purpose of research, risk assessment, or 

mitigation.

2.2 Sample Types: Bulk Water and Biofilm

Microbes and OPPPs generally reside within two niches in the premise plumbing 

environment: the biofilm and the bulk water (Falkinham et al., 2008; Flannery et al., 2006; 

Moore et al., 2006; Thomas et al., 2006; Wang et al., 2012). Biofilm is thought to serve as 

the ideal habitat for OPPPs, providing food and protection from disinfectants and other 

harmful agents. Amoebae have been detected at a higher frequency in biofilm than bulk 

water (Stockman et al., 2011), as the biofilm consists of a diverse and concentrated source of 

bacteria to graze upon (Huws et al., 2005; Paris et al., 2007). Interestingly, it is a common 

feature among bacterial OPPPs to survive phagocytosis and experience enhanced growth and 

virulence within the amoeba digestive vacuole (Thomas and Ashbolt, 2011). Such a “Trojan 

horse” phenomenon has been confirmed for Legionella, NTM and P. aeruginosa (Delafont et 

al., 2014; Greub and Raoult, 2004) and is thought to be obligate for Legionella replication 

under oligotrophic conditions (Declerck et al., 2009; Thomas and Ashbolt, 2011). However, 

the rich nutrient content of biofilm may allow nutritionally fastidious Legionella spp. to 

multiply extracellularly (Taylor et al., 2009).
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Even if biofilm is ultimately proven to be the most important ecological niche for OPPPs, 

bulk water is more accessible than biofilm and remains the most targeted for OPPPs 

investigation. Arguably, bulk water is also the most relevant to actual dissemination and 

exposure (Buse et al., 2012; Schoen and Ashbolt, 2011). As such, guidelines for Legionella 
and P. aeruginosa control are often based on bulk water bacterial loads (U.K. Department of 

Health, 2006, 2013). In a study comparing 3,910 paired water/biofilm samples, concordant 

Legionella detection results were found among 81% of pairs, with only 2% of pairs only 

yielding positive detection in the biofilm (Ditommaso et al., 2010). Ecological niches of 

specific species might also affect their distributions in suspended versus attached phases. For 

example, across eight water distribution systems, higher detection frequency in biofilm 

relative to water samples was confirmed for M. intracellulare, but not M. avium (Falkinham 

et al., 2001). Further systematic comparisons between biofilm and water samples are needed 

for other OPPPs to justify sampling plans.

2.2.1 Sampling of Water—Three consecutive steps are generally employed for sampling 

plumbing water: turning on a tap or valve, adjusting the flow rate, and collecting a 

prescribed volume of water using a sterilized container. Sodium thiosulfate is often used to 

neutralize residual chlorine and other halogens when disinfectant is used in the source water 

(CDC, 2005). However, technical details during sampling and preservation beyond the basic 

steps are worthy of consideration, especially when simultaneous monitoring multiple OPPPs 

is the goal. Table 1 summarizes procedures for OPPPs sampling applied across several 

studies.

Sample Volume: Sampling volumes applied for the detection of Legionella and P. 
aeruginosa, as two representative bacterial OPPPs, in drinking water systems have varied 

between 50 ml to 1L depending on the anticipated concentrations of target organisms 

(Ferroni et al., 1998; Halabi et al., 2001; Lavenir et al., 2008; van der Wielen and van der 

Kooij, 2013). Larger volumes (i.e., 5–10 L) were collected in case of low biomass level (e.g., 

distribution mains) in order to ensure sufficient recovery (U.K. Environment Agency, 2005; 

Barbaree et al., 1987). And even larger volumes, > 100 L, have been filtered for N. fowleri 
detection, yielding molecular and culture detections when smaller volumes (0.7 L) did not 

(Cope et al 2015). However, for some analytes and water qualities, larger volume sampling 

might be associated with concentration of potential inhibitory substances which might affect 

downstream analysis such as quantitative polymerase chain reaction (qPCR) amplification 

(Hata et al., 2011).

Pre-flushing or Post-flushing: Complex water usage patterns typify premise plumbing, 

resulting in temporal and spatial heterogeneity and periodically stagnant water. Higher 

numbers of microorganisms are likely to be detected following stagnation or infrequent use, 

as a result of disinfectant decay and microbial regrowth (Lautenschlager et al., 2010). Thus, 

one approach to maximize the likelihood of OPPPs detection is to sample taps after a period 

of stagnation (e.g., first draw of water taken in the morning). Taking the first sample (pre-

flushing) after at least 2 hours of stagnation or during a period of minimum water usage has 

been recommended for P. aeruginosa detection in augmented care centers (U.K. Department 

of Health, 2013). Similarly, in a molecular survey of multiple OPPPs in building plumbing, 
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imposing 8-h stagnation before sampling resulted in higher discrepancy between first-draw 

(pre-flushing) and post-flushing samples relative to sites without enforced stagnation (Wang 

et al., 2012). In case of a positive pre-flushing sample, it is suggested that a second sample 

be collected after running taps for 2 minutes in order to identify the source of contamination 

(U.K. Department of Health, 2013). Given these considerations, a major shortcoming of 

water microbiological quality monitoring as recommended by U.S. EPA regulations and 

other common guidelines for distribution system monitoring is the practice of thorough 

flushing and disinfection of taps prior to sampling, which is unlikely to detect water quality 

problems related to premise plumbing (NRC, 2006).

With regards to hot water systems, Western Pennsylvania Guidelines suggest sampling the 

first-draw (i.e., first 1 L) hot water from the outlet valve and prior to cold water system 

sampling (Allegheny County Health Department, 2014). However, some researchers 

recommend flushing the tap for 1–2 minutes prior to sampling in order to exclude cold water 

(Bargellini et al., 2011; Borella et al., 2005). Since it is not easy to determine when cold 

water will be completely flushed out, reaching temperature equilibrium has been used as a 

criteria to determine when to collect samples (Moore et al., 2006; von Baum et al., 2010; 

Wellinghausen et al., 2001). Additional steps might be needed if the goal is to solely sample 

the hot water. For instance, one study surveying Legionella occurrence in hot water systems 

in German single-family residences removed all devices from the taps, heated taps with a 

gas burner, and discarded the first 5 L water prior to water collection (Mathys et al., 2008). 

ASTM guideline and some researchers also suggested stratified sampling, which includes a 

first flush sample and a sample after temperature stabilization for Legionella in order to 

delineate the source of contamination (Bates et al., 2000; ASTM, 2008).

Aerator Removal: Faucet aerators represent potential risks for colonization of Legionella 
and other pathogens (CDC, 2003). Whether to remove aerators before sampling depends on 

the sampling objective. If the objective is to evaluate the risk and colonization of the outlet, 

the sample should be taken with the aerator and without disinfection. When the water 

flowing within the distribution system is the target, potential contamination from outlets 

should be minimized. CDC specifies that water samples for biological tests should be taken 

after removing aerators and disinfecting taps with sodium hypochlorite if the cleanliness of 

the tap is questionable (CDC, 2005). Other disinfection approaches for taps include ethanol 

or isopropanol disinfection (70% v:v), as well as flaming if the tap is made of metals (U.K. 

Environmental Agency, 2005; Mathys et al., 2008). Care should be taken when removing 

aerators as biofilm disruption and detachment might occur during dissembling.

Sample Preservation and Transportation: Handling and shipping samples usually takes 

from a few hours to several days, during which samples should be preserved accordingly in 

order to minimize cell cultivability impairment and/or potential regrowth. Recommended 

preservation procedures for Legionella enumeration varied considerably in different 

documents in terms of storing temperature and holding time. For example, The International 

Standards Organization (ISO) requires to refrigerate samples that cannot be processed within 

24 h (ISO, 2004); while CDC and American Society for Testing and Materials ASTM 

recommend to refrigerate samples only if they cannot be processed within 72 h (CDC, 
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2005), although protection from extreme heat or cold (i.e., <3 °C and/or >30 °C) is required 

at all times (ASTM, 2008). The U.K. Environmental Agency recommends maintaining 

samples between 6 and 20°C, in order to prevent cells from entering a viable but not 

culturable (VBNC) state during shipping, and to commence concentration and incubation 

procedures within 48 h (U.K. Environmental Agency, 2005). Two studies have investigated 

the effect of holding time on Legionella cultivability and reported conflicting results. McCoy 

observed significant changes (>1 log10 unit) in 52% of water samples (n=42) with 6 ~120 h 

holding time at room temperature (McCoy et al., 2012). Another recent study analyzing 159 

samples found little effect of holding time on Legionella counts, with root mean squared 

error increased by only about 3~8 % in overnight held samples at room temperature 

(Flanders et al., 2014).

On the other hand, water samples collected for P. aeruginosa culturing should be refrigerated 

(2~8 °C) within 2 h and processed within 24 h in order to prevent regrowth (U.K. 

Department of Health, 2013). On the contrary, little change in NTM numbers would be 

expected during shipping due to their slow grow and decay rates, as well as resistance to a 

wide range of environmental temperatures (Falkinham, 2009).

In terms of free-living amoeba, caution must be taken when handling and storing samples 

since common practices such as chilling and refrigeration will trigger the formation of cysts 

and VBNC state. Naegleria fowleri trophozoites are known to become VBNC when the 

temperatures is <10°C (Chang, 1978). Samples for N. fowleri cultivation should be stored 

and shipped at ambient temperature (i.e., non-chilled) and with adequate headspace since N. 
fowleri are thought to be highly aerobic (Kyle and Noblet, 1985). Thus, various shipping and 

handling requirements for each OPPP poses a significant challenge to monitoring multiple 

OPPPs simultaneously, likely requiring aliquoting of sub-samples in order to achieve 

optimal preservation conditions.

Concentration Methods: Sample concentration is typically required for detection of 

OPPPs, typically ranging from 50~1000 ml premise plumbing water. Filtration, 

centrifugation and immuno-magnetic separation (IMS) are three common concentration 

methods. The first two are non-specific approaches widely used for microbial analysis, 

whereas IMS is able to select target microbes from background microorganisms by using 

antibody-coated magnetic media (Allegra et al., 2011; Bedrina et al., 2013; Mull et al., 

2013).

Filtration is suitable for water samples with sufficiently low turbidity to avoid clogging. 

Generally, water is filtered through a 0.22 or 0.45 μm membrane (Bartie et al., 2001; CDC, 

2005), which later is transferred directly to media for culturing (U.K. Department of Health, 

2013) or used for cell resuspension by sonicating or votexing the filter in a small volume of 

water (Bartie et al., 2001; CDC, 2005; Thomas et al., 2008). Membranes may also be 

shredded for DNA extraction. Membranes with larger pore-size (e.g., 1.2 μm) have 

sometimes been used for amoeba filtration, given the larger diameter of protozoan cells 

(Pernin et al., 1998), but more recently N. fowleri have been recovered from large volumes 

of water using ultrafiltration (Cope et al., 2015). Centrifugation can be applied for both clean 

water and non-filterable water with higher turbidity. Typically, water samples are centrifuged 
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with a speed of 3000 g for 30 min or 6000g for 10 min (Bartie et al., 2001; Brindle et al., 

1987), leaving pellets that can be resuspended in 2 to 20 ml of diluents after discarding the 

supernatants. Recovery efficiencies of filtration and centrifugation have been evaluated for 

Legionella and Mycobacterium across several studies, with filtration demonstrating similar 

or higher specific recovery rates relative to centrifugation (Boulanger and Edelstein, 1995; 

Brindle et al., 1987; Ta et al., 1995; Thomson et al., 2008). However, centrifugation is a 

better choice for recovery of Naegleria, from small-volume samples as trophozoites may 

lyse by during vacuum filtration (Pernin et al., 1998). Moreover, specific recovery rates can 

vary considerably when different kinds of membranes and centrifugation conditions are 

applied (Boulanger and Edelstein, 1995).

2.2.2 Sampling of Biofilm—In premise plumbing, biofilm samples are often collected 

from faucets, shower heads, drains, hoses and water filters (Charron et al., 2015; Falkinham, 

2010; Liu et al., 2012; Proctor et al., 2016; Thomas et al., 2014; Wang et al., 2012). Anti-

splash or spray nozzles are recommended to be removed from faucets and shower heads and 

disassembled prior to biofilm sampling in order to access the inner area and obtain 

representative biofilm (U.K. Environmental Agency, 2005; Feazel et al., 2009). However, 

this is difficult to apply consistently in all cases since often devices are not designed for 

ready disassembly. Biofilm can be removed from surface by scraping a known area of 

surface using a sterile knife or swab (Charron et al., 2015; Liu et al., 2012; Srinivasan et al., 

2008). Thorough removal of biofilm may require multiple scrapings (Srinivasan et al., 2008) 

or further treatments such as sonicating removable parts (e.g., faucet gaskets) in a cold bath 

(Liu et al., 2012). Although some studies used epifluorescence microscopy to quantify the 

cell removal efficiencies (Percival et al., 1999), this technology is constrained for premise 

plumbing biofilm samples since most parts in premise plumbing are not removable.

Biofilm sampling sequence may affect how representative the samples are. When both 

biofilm and bulk water are sampling targets, biofilm samples should be taken first as water 

sampling and flushing will dislodge the microbes from biofilms. However, sampling biofilm 

first might release bacteria from the biofilm into the bulk phase and affect the 

representativeness of subsequent bulk water sample if the goal is to take the first-draw 

samples. On the other hand, when sampling biofilm in a sink, drain biofilm must be taken 

prior to contact with water from the tap.

2.3 Sample Preservation Strategies for Culture-based versus Molecular Methods

Different sample preservation strategies may be required when subject to culturing, 

molecular analysis, or both. Water samples concentrated by membrane filtration or 

centrifugation can be resuspended in media prior to culturing. Same (e.g., drinking water 

(Borella et al., 2005)) or similar non-nutrient medium (e.g., phosphate-buffered saline 

(Leoni et al., 2001)) are usually used for resuspension, in order to minimize the influence of 

shifting media conditions on regrowth potential and cultivability, with storage at 4 °C if 

plating is not performed immediately. When samples are intended for molecular analysis, 

membranes or resuspended media can be directly kept at -20 °C or lower until DNA/RNA 

extraction (Eichler et al., 2006). Similarly, culturing biofilm cells involves resuspension in 
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appropriate media (Wullings et al., 2011); while cotton swab tips can be directly preserved 

in 70% ethanol (Feazel et al., 2009) at -20 °C or lower for molecular analysis.

3. Detection Methods

3.1 Culturing of OPPPs

Culturing is used to verify and recover viable cells, remaining the “gold standard” for 

identifying and typing infectious and life-threatening pathogens. Thus, it is not a surprise 

that the majority of current standard methods, regulations, and action limits for OPPPs are 

based on conventional culture methods. However, culturing of OPPPs is often criticized as 

labor-intensive and time-consuming, requiring specialized expertise to correctly identify 

target cells and failing to provide timely information in urgent situations. Culture-based 

techniques may also limited in their quantitative capacity.

3.1.1 Legionella spp—Legionella is a fastidious microorganism with highly-specific 

nutrient (e.g., iron, L-cysteine) and cultivation requirements. Labs around the world use 

different culturing protocols for Legionella recovery, with considerable variation noted in 

terms of pretreatment approaches, cultivation medium and incubation period. ISO 

(ISO11731-2:2004) recommends use of buffered charcoal yeast extract (BCYE) agar 

containing L-cysteine or selective GVPC agar (BCYE supplemented with glycine, 

vancomycin, polymyxin B, cycloheximide) for recovery of Legionella from filtered water 

samples. The results are compared to that of BCYE agar without L-cysteine for specificity 

confirmation (ISO, 2004). Meanwhile, the CDC advocates simultaneous use of four different 

kinds of media, including BCYE base media, two selective BCYE agars (i.e., PCV (BCYE 

supplemented with polymyxin B, cycloheximide, and vancomycin) and GVPC, and PCV 

without L-cysteine as a negative control (CDC, 2005). Other versions of Legionella 
cultivation medium include variation of antimicrobial supplements (Ta et al., 1995), dye 

supplements for colony staining (e.g., MWY medium) (Ta et al., 1995) or specific nutrients 

(e.g., ABCYE: BCYE with bovine serum albumin) to cater to the growth requirements of 

certain Legionella spp. such as L. micdadei (CDC, 2005).

Heat and acid treatments are routinely used to suppress growth of non-legionella species by 

taking advantage of Legionella’s tolerance of these extreme conditions. Heat treatment is 

typically performed between 50–59 °C for 3–30 min and pH treatment at ~2.2 for 3–15 min 

(De Luca et al., 1999; Reinthaler et al., 1993). Improved recovery frequency had been 

observed for both pretreatment methods compared to no treatment (Reinthaler et al., 1993). 

However, inconsistent results have been noted among different studies in terms of optimal 

combinations of pretreatment approaches and cultivation media (Bartie et al., 2003; De Luca 

et al., 1999; Leoni and Legnani, 2001). Factors such as sample matrices, Legionella 
concentration, and commensal flora could possibly affect sensitivity and specificity of 

applied culturing techniques. However, both heat treatment and acid treatments may not be 

100% effective and can also lead to underestimation of Legionella counts as a result of cell 

cultivability damage (Leoni and Legnani, 2001).

Another approach for recovering Legionella in premise plumbing samples is to co-culture 

samples with amoebae (e.g., Acanthamoeba or Hartmanella). This approach may improve 
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recovery frequency and detection limits for samples with low Legionella counts and/or 

VBNC cells by increasing their numbers and resuscitating cultivability (Conza et al., 2013; 

Garcia et al., 2007).

3.1.2 Mycobacterium spp—Mycobacterium spp. are a group of slow-growing, 

hydrophobic microorganisms ubiquitous in natural and engineered aquatic environments 

(Falkinham, 2009). Their cells tend to aggregate and adhere to surfaces, increasing difficulty 

for isolation and enumeration. Culturing techniques for Mycobacterium spp. typically 

include a pretreatment step to prevent bacterial and fungal overgrowth, use of nutrient-rich 

medium (e.g., M7H10 agar supplemented with 0.5% glycerol and 10% oleic-albumin 

enrichment) to support growth, and incubation at 35–37 °C for 10–21 days to allow enough 

time for recovery (Falkinham et al., 2008; Falkinham et al., 2001; Thomson et al., 2008). 

Although a variety of protocols have been used for mycobacteria recovery, a standard 

protocol has not yet been established.

A range of bacterial and fungal inhibitors, including cetylpyridinium chloride (CPC), NaOH, 

formaldehyde, and oxalic acid had been used for sample pretreatment (Falkinham et al., 

2008; Falkinham et al., 2001; Thomson et al., 2008; Torvinen et al., 2004). Decontamination 

with CPC was considered the best approach for treated water (Neumann et al., 1997) and has 

been widely applied in many drinking water-related studies (Falkinham et al., 2001, 2008; 

Torvinen et al., 2004). However, these pretreatment methods are not always effective. 

Decontamination efficacy can vary dramatically upon selection of different inhibitors, which 

might be partially ascribed to characteristics of the water matrix and presence of various 

mycobacterial species. Moreover, decontamination steps can also result in loss of viable 

mycobacteria (Thomson et al., 2008).

Employment of different culture media also leads to various recovery efficiencies. Neumann 

et al. suggested that Lowenstein-Jensen medium and Ogawa egg yolk medium are superior 

to Ogawa whole-egg medium containing ofloxacin and ethambutol in terms of 

mycobacterial recovery in surface and treated water (Neumann et al., 1997). Thomson et al. 

obtained similar results with Middlebrook 7H10 and 7H11, and Lowenstein-Jensen slants 

after 3 week incubation of water samples. However, Lowenstein-Jensen slants initially 

appeared to be less sensitive when examined earlier (Thomson et al., 2008). Other factors 

such as temperature (Neumann et al., 1997) and incubation period (Thomson et al., 2008) 

can also affect recovery.

3.1.3 P. aeruginosa—P. aeruginosa is a Gram-negative, oxidase-positive bacterium that 

usually produces pyocyanin and fluorescein and hydrolyzes casein (U.K. Department of 

Health, 2013). Standard culturing methods for P. aeruginosa in drinking and/or recreational 

water include the membrane filtration and multiple-tube techniques, both of which take 

advantages of its pigment-producing characteristics (APHA, 2012). M-PA agar is used to 

recover P. aeruginosa from filter membranes, incubated at 41.5±0.5 °C for 72 h for 

presumptive tests. Colonies with 0.8~2.2 mm in diameter, flat in appearance with light outer 

rims and brownish to greenish-black centers are counted as positive numbers. Presumptive 

tests are followed by confirmation tests using milk agar for another round of cultivation at 

35 °C for 24 h to assess atypical colonies, taking advantages of P. aeruginosa’s capability of 
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hydrolyzing casein and producing a yellowish to green pigment. Multiple-tube techniques 

use asparagine broth for P. aeruginosa growth and green fluorescent pigment production in 

presumptive tests (35~37 °C for 24–48 h), followed by confirmation tests using acetamide 

broth or agar for 24–36 h cultivation. Acetamide can be deaminated by P. aeruginosa, 

resulting in phenol red indicator shifting from yellow orange to purple.

As described above, standard culture methods for P. aeruginosa are highly time-consuming. 

An alternative most probable number (MPN) method, commercialized by IDEXX 

laboratories (Maine, USA), provides semi-quantitative results within 24–48 h by using a 

bacterial enzyme detection reagent. This method is reported to perform equivalently to the 

membrane filtration method for examination of hospital water (Sartory et al., 2015) and was 

recently listed as an alternative method for P. aeruginosa detection in swimming pool water 

testing by the German Federal Environment Agency (IDEXX, 2015).

3.1.4 Acanthamoeba and Naegleria fowleri—Spreading concentrated water samples 

or placing a membrane filter on non-nutrient agar plates containing a lawn of Gram-negative 

bacteria (e.g., Escherichia coli or Enterobacter aerogenes) as a food source is a common 

approach for recovering amoebae from drinking water (Delafont et al., 2014; Tyndall et al., 

1989). Plates are typically incubated at 28–44 °C for up to one month (Delafont et al., 2014; 

Marciano-Cabral et al., 2010; Thomas et al., 2006; Tyndall et al., 1989), being observed at 

regular intervals by microscopy to confirm the presence or absence of amoeba. Assays 

specifically targeting Naegleria spp. favor a higher incubation temperature (i.e., 42–44 °C), 

since Naegleria spp. are thermophiles (Ithoi et al., 2011; Marciano-Cabral et al., 2010; 

Tyndall et al., 1989. Mull et al., 2013). Identities of amoeba isolates are subsequently 

determined according to their morphology or using molecular methods (e.g., PCR) (Garcia 

et al., 2013). Acanthamoeba trophozoites and cysts have distinct features (e.g., double-

walled cysts) that can be categorized into three different morphological groups based on cyst 

size and numbers of arms (Pussard and Pons, 1977). Naegleria-like trophozoites and cysts 

typically demonstrate eruptive-like formation of the pseudopodia and smooth cyst walls, 

respectively (Tyndall et al., 1989). Further confirmation of Naegleria species involves a test 

to induce trophozoites to flagellate by adding sterile distilled water for additional 1–2 h 

incubation (Ithoi et al., 2011; Visvesvara et al., 2007). However, full validation of either 

Acanthmoeba or Naegleria isolates to species level using culturing alone is not reliable, as 

morphology of trophozoites and cysts can be strongly affected by culturing conditions 

(Visvesvara et al., 2007). Therefore, other assays (molecular, enzymatic, or virulence tests) 

are needed for species identification.

3.2 Molecular methods

Molecular methods generally involve manipulation and analysis of DNA, RNA, or proteins. 

Compared to conventional cultivation methods, molecular methods have the advantage of 

low detection limit, high specificity and sensitivity, ability to detect viable but not cultivable 

(VBNC) cells, and short turnaround time (Girones et al., 2010). Such advantages are very 

attractive for pathogen monitoring, especially when results are urgent and for simultaneous 

detection and enumeration of multiple OPPPs.
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A number of molecular techniques, including PCR, quantitative-PCR, sequencing, etc., have 

been developed for identifying and quantifying OPPPs (Table 2). These methods are nucleic 

acid-based, with DNA/RNA extraction as the first and the foremost step in analysis 

protocols. Obtaining sufficient high-quality DNA/RNA with minimal PCR inhibitors is 

prerequisite to downstream amplification, posing a particular challenge to drinking water 

given its inherently low biomass concentration. On the other hand, nucleic acid extraction 

efficiency can vary considerably across studies (Girones et al., 2010). Sample types and 

properties, cell characteristics, extraction procedures or DNA/RNA extraction methods can 

affect the quantity and quality of nucleic acid yields (Hwang et al., 2012). Some OPPPs may 

demand special treatment during the nucleic acid isolation process. It has been reported that 

the structures of Acanthamoeba cysts are resistant to DNA extraction reagents, requiring 

incubation with protease K prior to extraction to improve yields (Goldschmidt et al., 2008). 

Some molecular methods do not require extraction of nucleic acids. For example, 

fluorescence in situ hybridization (FISH) and flow cytometry methods utilize fluorescently-

labeled DNA/RNA probes that can penetrate cells and bind to target nucleic acids without 

rupturing cell structures. The emitted fluorescence is captured by microscopy or flow 

cytometry. However, these techniques are often criticized for high detection limits, laborious 

procedures and low resolution with aggregated microbial cells (Buchbinder et al., 2002; 

Nocker et al., 2009; Wullings and van der Kooij, 2006). Such techniques are rarely 

encountered, typically in research contexts employing inoculation of high numbers of 

OPPPs to simulated drinking water systems (Declerck et al., 2009; Lehtola et al., 2007). 

Below we focus more specifically on nucleic acid-based molecular techniques that are more 

widely practiced for drinking water monitoring (Girones et al., 2010).

3.2.1 PCR—PCR can selectively amplify signature genes (i.e., gene markers) from target 

microorganisms. Observation of PCR products following agarose gel electrophoresis can 

serve to verify the presence/absence of target organisms. Assay specificity depends on the 

specificity of primers and the stringency of the PCR (Nocker et al., 2009). PCR may also be 

combined with some downstream genotyping techniques for genetic diversity exploration or 

species identification (Huang and Hsu, 2011). For example, phylogenetic analysis of cloned 

and sequenced PCR-amplified Legionella 16S rRNA genes revealed a large diversity of 

uncultured Legionella spp., including L. bozemanii, L. worsleiensis, L. quateirensis, L. 
waltersii, and L. pneumophila in water from water treatment plants (Wullings and van der 

Kooij, 2006). Some studies used endonuclease digestion of PCR products for mycobacterial 

isolate identification (Cheunoy et al., 2005; Chimara et al., 2008). However, this technique 

requires establishment of restriction patterns for a collection of known mycobacterial 

species. If the typical restriction pattern is not present, other cultural, biochemical, and 

enzymatic characterization may also be necessary for further identification (Falkinham et al., 

2001). Other variations of PCR-based methods, such as repetitive sequenced PCR (rep-PCR) 

fingerprinting, multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA), 

can also be used for detection of novel genotypes, or matching OPPP isolates between 

environmental and clinical samples (Falkinham, 2010, 2011; Kahlisch et al., 2010; Sobral et 

al., 2011).
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3.2.2 Quantitative PCR (q-PCR)—q-PCR is advantageous relative to traditional PCR in 

that it provides quantitative information and a lower detection limit. It has been extensively 

applied for OPPP monitoring for both environmental and clinical samples (Adrados et al., 

2011; Ahmed et al., 2014; Bedard et al., 2015; Behets et al., 2007a; Beumer et al., 2010; 

Bonetta et al., 2010; Madarova et al., 2010; Morio et al., 2008; Qin et al., 2003; Radomski et 

al., 2010). Given its consistency and quantitative capabilities, q-PCR has potential to be 

accepted as a standard method for pathogen monitoring. For instance, the Association 

Française de Normalisation (AFNOR) and the ISO have developed standards NF T90-471 

and ISO/TS 12869:2012, respectively, for detection and quantification of Legionella spp. 

and L. pneumophila by q-PCR (AFNOR, 2015; ISO, 2012).

A variety of q-PCR assays for monitoring Legionella spp. and L. pneumophila in 

environmental samples have been established for research (Behets et al., 2007b; Nazarian et 

al., 2008; Wellinghausen et al., 2001) or commercial (Yaradou et al., 2007) purposes. Target 

genes for Legionella genus level include 16S rRNA (Wellinghausen et al., 2001; Wullings 

and van der Kooij, 2006) and 23S rRNA (Nazarian et al., 2008) genes, which contains 

regions conserved for all Legionella species; while the macrophage infectivity potentiator 

(mip) gene, associated with its virulence, is the most common bio-marker for differentiating 

L. pneumophila from other Legionella (Behets et al., 2007b; Wellinghausen et al., 2001).

q-PCR assays for the Mycobacterium genus often target the 16S rRNA gene (Adrados et al., 

2011; Radomski et al., 2010) or other housekeeping genes (e.g., heat shock protein 65 gene 

hsp65 (Tobler et al., 2006)). In order to develop a reliable q-PCR assay to detect 

mycobacteria in water, Radomski (Radomski et al., 2010) tested 18 pairs of previously 

published primers in silico and in house, finally identifying 110F/I571R as the best 

candidate. Verification of the newly-developed q-PCR method demonstrated improved 

specificity, but lower sensitivity relative to two previously-published q-PCR methods. An 

increasing number of mycobacterial whole-genome data can facilitate identification of 

alternative genes for improved mycobacterial identification. A q-PCR method based on the 

atpE gene that codes ATP synthase subunit C was recently proposed for mycobacteria 

detection and quantification in environmental and clinical samples. This assay was 

demonstrated to provide adequate specificity and sensitivity, yielding results that correlated 

well with the Radomski assay (2010) (Radomski et al., 2013). q-PCR was also used to target 

species level mycobacteria in drinking water, including pathogenic species Mycobacterium 
avium complex (Chern et al., 2015; Whiley et al., 2015), Mycobacterium intracellulare 
(Chern et al., 2015), and M. avium subspecies paratuberculosis (Beumer et al., 2010; Chern 

et al., 2015; Rodriguez-Lazaro et al., 2005).

Commonly used q-PCR-targeted signature sequences for P. aeruginosa identification that 

have been applied to both clinical and environmental samples include regions of the 16S 

rRNA, 23S rRNA, gyrase subunit B (gyrB), exotoxin A (ETA), oprl and ecfX genes (Anuj et 

al., 2009; Lee et al., 2011a; Qin et al., 2003; Schwartz et al., 2006). However, these assays 

have been criticized for false positive and/or false-negative detection of P. aeruginosa, likely 

owing to wide sequences variation of P. aeruginosa strains and frequent genetic exchange 

with other microorganisms (Anuj et al., 2009; Choi et al., 2013; Qin et al., 2003; Schwartz et 

al., 2006). As a result, some researchers have proposed that a combination of two targets is 
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more suitable for increased specificity and sensitivity of P. aeruginosa identification (Anuj et 

al., 2009; Qin et al., 2003). For instance, Anuj developed a duplex qPCR assay targeting the 

ecfX and gyrB genes. Although this assay can provide simultaneous confirmation of positive 

results, presence of only one gene might require supplement tests with a third gene, as a 

single positive result might represent either a cross-reaction with a non-P. aeruginosa species 

or otherwise a P. aeruginosa presenting a sequence variation within one of the target gene 

regions (Anuj et al., 2009). With advances in DNA sequencing technology and availability 

of increasing whole genome data, novel targets for P. aeruginosa may yet be identified. Choi 

et al. recently took advantage of comparative genomic tools and developed a new q-PCR 

assay targeting the O-antigen acetylase gene. The specificity of this assay was tested against 

6 P. aeruginosa isolates, 18 different Pseudomonas species and 23 other reference pathogens 

(Choi et al., 2013). However, tests against environmental samples would be needed for 

further assay specificity validation considering variation of background microorganisms in 

different sample matrices.

There are two commonly applied q-PCR assays for Acanthamoeba, the Riviere (Riviere et 

al., 2006) and Qvarnstrom (Qvarnstrom et al., 2006) assays, both of which employ Taqman 

probes and target a fragment of the 18S rRNA gene at the genus level. These two assays are 

reported to have high specificity and a comparable detection limits when monitoring A. 
castellanii trophozoites in water and biofilm samples. However, the Qvarnstrom assay is 

reported to have higher positive detection rates and quantification numbers in terms of 

environmental sample monitoring (Chang et al., 2010).

Several q-PCR assays for N. fowleri have been developed in recent years to complement 

traditional culturing and MPN methods for detection in clinical and environmental samples. 

These assays generally target the 18S rDNA gene (Qvarnstrom et al., 2006), 5.8S gene and 

internal transcribed spacer (ITS) regions (Mull et al., 2013; Puzon et al., 2009) or the 

MP2Cl5 sequence (Behets et al., 2007a; Madarova et al., 2010). Puzon developed and 

applied a q-PCR assay for N. fowleri monitoring in water and biofilm samples, 

demonstrating higher sensitivity relative to culture methods in terms of spiked cell detection 

in biofilm and water (i.e., 5 cells in 250 ml water or biofilm) (Puzon et al., 2009). A recent 

study (Streby et al., 2015) systematically evaluated four previously published q-PCR assays 

in terms of their themodynamic stability, sensitivity, specificity, detection limits, humic acid 

inhibition effects, and performances with seeded environmental matrices by standardizing 

the reaction conditions. Results demonstrated that Qvarnstrom (Qvarnstrom et al., 2006) and 

Mull assays (Mull et al., 2013) have better performance in terms of detection and 

amplification limits, but lower specificity (93%); while the Puzon assay (Puzon et al., 2009) 

was reported to provide100% sensitivity and specificity, but a relatively higher detection 

limit. In other cases, q-PCR assays targeting Naegleria genus or a more broader free-living 

amoeba species followed by a melting curve analysis were used for discrimination and 

identification of N. fowleri and other closely related species (Behets et al., 2006; Robinson 

et al., 2006).

Head-to-head comparison of OPPP detection by q-PCR and culture of water and biofilm 

samples has been the subject of multiple studies (Table 2), with the general trend being 

higher detection frequency and cell numbers by q-PCR (e.g., Legionella (Wang et al., 2012; 
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Wellinghausen et al., 2001; Wullings et al., 2011), mycobacteria (Hussein et al., 2009; 

Radomski et al., 2013), P. aeruginosa (Bedard et al., 2015), N. fowleri (Behets et al., 

2007a)). This phenomenon is likely associated with higher sensitivity and lower detection 

limit of q-PCR. However, overestimation of OPPP numbers by q-PCR cannot be ruled out, 

as DNA from dead cells may also be amplified. This possibility may be particularly 

applicable to samples with high levels of disinfectant residual (Girones et al., 2010), though 

commonly disinfectants have decayed and microbes are in re-growth mode in premise 

plumbing. Systematic application of qPCR at multiple monitoring points to inform a mass 

balance is one approach to discerning information regarding the behavior of viable cells in 

premise plumbing. Another solution to decrease false positives resulting from DNA from 

dead cells is to target a longer DNA fragment instead of shorter pieces (McCarty and Atlas, 

1993) or pretreatment with nucleic acid-binding dye (see section 3.2.3 for more details). 

Positive correlations have been observed between q-PCR results and culturing for Legionella 
under some circumstances (Guillemet et al., 2010; Wellinghausen et al., 2001), indicating 

the potential of using q-PCR as an alternative method for OPPP monitoring. However, in 

other cases, no correlations were found (e.g., Legionella (Wullings et al., 2011); 

mycobacteria (Hussein et al., 2009)). Discrepancies between q-PCR and culturing may also 

be associated with different sample types and characteristics (e.g., the number of VBNC 

cells and/or dead cells in samples). An international trial involving 6 participating countries 

demonstrated less discrepancy of log mean Legoinella number between q-PCR and culturing 

of plumbing water samples compared to cooling tower samples (Lee et al., 2011b).

Culture is still sometimes more effective for detecting low levels of target pathogens than q-

PCR, since DNA extraction can result in substantial cell loss, while culturing under the right 

conditions can facilitate amplification of dilute cells. For example, one study isolated 

Mycobacterium spp. from 76% of tap water samples, while q-PCR only yielded about 21–

36% detection rates, depending on the DNA extraction method (Radomski et al., 2013). 

Another study monitoring N. fowleri in water samples also recommended MPN for samples 

with low N. fowleri numbers (i.e., <200 cells/l) and suggested that DNA extraction and PCR 

volume limitations contributed to a high q-PCR quantification limit (Behets et al., 2007a). 

Moreover, the presence of PCR inhibitors may also affect q-PCR readings (Levi et al., 

2003). For example, disinfectant residues present in drinking water sample can inhibit PCR 

amplification (Lee et al., 2011a).

3.2.3 Viable PCR/q-PCR—The major disadvantages of PCR/q-PCR lie in their inabilities 

to distinguish DNA from live or dead cells. This is problematic for samples with a large 

amount of dead cells, which is likely to occur in drinking water systems where disinfectants 

are present or high temperatures exist (e.g., water heaters). Therefore, development of a new 

molecular method capable of selectively amplifying nucleic acids from viable cells is would 

be extremely valuable for microbial analysis of premise plumbing.

PCR/q-PCR combined with nucleic acid-binding dye (e.g., ethidium monoazide bromide, 

propidium monoazide bromide) pretreatment is being explored for selectively monitoring 

viable OPPPs in drinking water. These intercalating dyes are intended to enter damaged cell 

membranes and covalently bind to DNA after photo activation, preventing downstream PCR 

amplification of DNA from membrane-compromised cells. Several studies have indicated 
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promise of an EMA/PMA-based qPCR method for Legionella (Adela Yanez et al., 2011; 

Chen and Chang, 2010; Delgado-Viscogliosi et al., 2009; Inoue et al., 2015; Mansi et al., 

2014; Slimani et al., 2012), mycobacteria (Lee et al., 2015; Nocker et al., 2007), P. 
aeruginosa (Gensberger et al., 2013, 2014), and Acanthamoeba (Chang et al., 2013) cells by 

testing against heat-treated, chlorine-treated cells and/or environmental water samples (e.g. 

drinking water, spa water, swimming pool water) as controls. In general, EMA/PMA-qPCR 

reduces the detection rates compared to conventional qPCR, but demonstrates equal or 

higher detection rates and cell counts relative to culturing due to inclusion of VBNC cells 

(Delgado-Viscogliosi et al., 2009; Inoue et al., 2015; Mansi et al., 2014). The effectiveness 

of EMA/PMA-qPCR is associated with a variety of factors, such as dye selection and dosage 

(Chen and Chang, 2010; Yanez et al., 2011), incubation time (Yanez et al., 2011), sample 

types (Inoue et al., 2015), target-cell loads and background flora (Gensberger et al., 2013; 

Slimani et al., 2012), as well as characteristics of target microorganisms (e.g., bacterial or 

eukaryotic cells (Fittipaldi et al., 2011)). Therefore, optimization processes and extra 

adaptation steps for each sample and/or microorganism type may be needed prior to 

application of EMA/PMA-qPCR. Further, intercalating dye treatment might not be effective 

for cells embedded in biofilm, since absolute dominance of non-target microorganisms may 

reduce the dye-quenching effect and complex biofilm composition and structures may also 

prevent dye penetration (Taylor et al., 2014). In addition, it has been reported that PMA-

PCR/qPCR assays with longer amplicons (e.g., 400 bp) may lead to better suppression of 

dead-cell signal compared to short-amplicons (e.g., 100 bp), since PMA-induced damage is 

more likely to occur in longer amplicons (Contreras et al., 2011; Ditommaso et al., 2015).

3.2.4 High throughput DNA sequencing—High throughput DNA sequencing, also 

called next generation sequencing, is a catch-all term describing a variety of technologies 

that allow rapid and simultaneous sequencing of millions of nucleic acid fragments 

(Shendure and Ji, 2008). High throughput sequencing is a powerful tool for understanding 

the microbial ecology of premise plumbing, revealing diverse microbial community 

compositions in drinking water distribution systems across the globe (Chao et al., 2015; 

Delafont et al., 2014; Hong et al., 2010; Ji et al., 2015). A typical procedure for drinking 

water microbiome investigation includes application of universal primers targeting 16S 

rRNA genes for DNA amplification followed by high throughput sequencing, the result of 

which could demonstrate the presence or absence of genera containing potential OPPPs 

(Delafont et al., 2014; Gomez-Smith et al., 2015; Ji et al., 2015; Wang et al., 2013). 

Reported abundances of sequences belonging to these genera varied considerably across 

different samples. Typically, lower abundances have been observed for Legionella (e.g., 0–

2.1% and 0–0.48% for Legionella spp. in drinking water (Wang et al., 2014) and biofilm 

samples (Wang et al., 2013), respectively) compared to Mycobacterium spp. (e.g., 25–78% 

in water main biofilm samples (Gomez-Smith et al., 2015); ~20% in pooled dataset of 

municipal drinking water samples from different U.S. cities (Holinger et al., 2014)). 

However, due to the short read length, high throughput sequencing based on 16S rRNA gene 

PCR products have limited taxonomic resolution, which inhibits the ability to differentiate 

species and therefore cannot verify detection of actual pathogens. Thus, more specific 

primers (e.g., mycobacterial functional genes) have recently been chosen prior to deep 

sequencing in order to increase the taxonomic resolution. PCR amplification of a 461-bp 
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fragment of the mycobacterial heat shock protein (hsp65) gene followed by Illumina Miseq 

analysis were applied in water main samples contacting different pipe materials, 

demonstrating varying abundances of M. frederiksbergense, M. aurum, M. hemophilum, and 

M. lentiflavum (Gomez-Smith et al., 2015). High throughput sequencing can also be applied 

at the whole-genome level for high resolution characterization of OPPPs. For instance, 

Gomez-Valero et al. (Gomez-Valero et al., 2014) sequenced L. micdadei, L. hackeliae and L. 
fallonii (LLAP10) and compared them with existing Legionella genome data, revealing 

surprisingly dynamic genomes due to a large mobilome mainly comprising the type IV 

secretion system. Further, characterization of OPPP whole genomes by high-throughput 

sequencing might assist in identifying critical subset of genes (i.e., “pan-genome”) defining 

the pathogenic strains of each OPPP genus from non-pathogenic strains, improving 

molecular detection of virulence pathogens (Pruden et al., 2013).

3.3 Phenotypic assays

“Phenotypic assays” generally encompass techniques that take advantage of phenotypic 

properties, such as cell morphological, biochemical, serological, and physiological traits. 

Here we will mainly discuss immunoassays that have been developed and applied for OPPP 

detection in environmental samples.

Immunoassays developed for OPPPs typically rely on genus or species-specific monoclonal 

or polyclonal antibodies to recognize and quantify antigens. These assays can have various 

formats such as lateral flow assay (Helbig et al., 2006), enzyme-linked immunosorbent assay 

(ELISA) (Reveiller et al., 2003), immunochromatograpic test (Helbig et al., 2006), and can 

be combined with other detection methods (e.g., microscopy (Baba et al., 2012), cytometry 

(Fuechslin et al., 2010), sensors (Bekir et al., 2015; Enrico et al., 2013)). For instance, anti-

L. pneumophila and anti-Legionella antibodies have been widely used in a number of 

immunoassays to detect L. pneumophila of various serogroups and/or distinguish L. 
pneumophila from other Legionella species (Delgado-Viscogliosi et al., 2005; Fuechslin et 

al., 2010). In general, Legionella antibodies are conjugated with reporter enzyme or 

fluorescent tags prior to specific antibody-antigen recognition processes, signals of which 

are captured after colormetric reactions (Helbig et al., 2006), or directly detected by 

microscopy (Baba et al., 2012), solid-phase cytometry (Parthuisot et al., 2011) or flow 

cytometry (Tyndall et al., 1985). In addition, immunomagnetic separation assays in which 

magnetic beads or particles were covered with antibodies have been used to magnetically 

recover or concentrate Legionella (Bedrina et al., 2013). Recovered cells can be subjected to 

downstream analyses such as q-PCR (Mull et al., 2013) or flow cytometry (Fuechslin et al., 

2010; Keserue et al., 2012). Furthermore, another layer of staining with cell viability 

markers in addition to antibody labeling allows simultaneous detection of target 

microorganisms and live/dead discrimination. These techniques have recently been applied 

for live Legionella monitoring in drinking water samples (Delgado-Viscogliosi et al., 2005; 

Keserue et al., 2012). Other reported immunoanalytical methods include construction of 

miniaturized immonobiosensors (e.g., optic biosensor, impedimetric biosensor) with 

immobilized antibodies to provide rapid screening and on-site measurement of L. 
pneumophila and P. aeruginosa in contaminated water samples (Bekir et al., 2015; Enrico et 

al., 2013).
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Advantages of immunoassays include rapid turnaround time (e.g., ~20 min to several hours), 

high specificity and sensitivity, and overall cost effectiveness (Lesnik, 2000). However, their 

application efficacy for OPPP monitoring in premise plumbing is still subject to the 

concentration level of target cells and availability of high quality antibodies. It has been 

reported that selected antibodies might not be able to cover the whole range of serogroups or 

species (Keserue et al., 2012) and validation of specificity and sensitivity against 

environmental background is often lacking (Toriyama et al., 2015; Visvesvara et al., 1987).

4. Conclusions and Research Needs for OPPP Detection Methods

OPPPs pose a particular challenge to monitoring given that they do not correspond to fecal 

indicators and they establish as part of the native microbiota of premise plumbing systems, 

which are highly complex and variable from site to site. Further, the ecology and physiology 

of OPPPs further challenges their detection, particularly when seeking to analyze multiple 

OPPPs in parallel. Unified approaches to OPPP monitoring and detection are urgently 

needed, especially in the context of informing proactive risk prevention, outbreak response, 

and research aimed at better understanding of their behavior and identifying improved 

means of monitoring and control. Identification and agreement upon effective monitoring 

practices for OPPPs also stands as an impediment to effective action towards development of 

policy aimed at preventing their proliferation beyond the property line and protecting public 

health.

Appropriate methodology for OPPP monitoring is dependent upon the intended goal. Given 

the high level of resolution needed to distinguish a true pathogen from related, non-

pathogenic organisms, culture-based methods are likely to remain the gold standard, 

particularly for outbreak investigation. However, in the context of risk prevention and 

mitigation, molecular- and physiological-based methods hold the promise of supporting 

more extensive, timely, and economical evaluation of problematic sites that could be 

followed-up upon with culturing. Such an approach could help overcome challenges of 

applying a comprehensive and representative monitoring plan for complex premise-

plumbing systems. For example, although regular application of q-PCR for monitoring L. 
pneumophila would not directly provide information about live/dead status, it would serve to 

characterize the baseline and identify “hot spots” that could be acted upon with culturing 

when there is suspicion of a problem. Essentially, such an approach could serve as a 

molecular “indicator,” much in the same way the fecal pathogen paradigm has held value as 

an indicator for fecal pathogens, though the indicators themselves are not pathogens. 

Approaches for improving the ability of molecular methods for distinguishing live/dead 

status are currently under development.

In the context of research, molecular-based methods, particularly next-generation DNA 

sequencing, is beginning to revolutionize understanding of OPPP microbial ecology in 

plumbing systems. As OPPP whole genomes are being sequenced, new insight is being 

gained into exactly what differentiates pathogenic from non-pathogenic forms. Thus, 

molecular-based methods can serve to identify improved markers for highly specific 

monitoring of virulent OPPP strains. Molecular methods will also improve understanding of 

their microbial ecology, including identification of key relationships and interactions that 
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could be exploited for improved engineering control. In particular, the relationship between 

biofilm and bulk water and the role and importance of amoebal hosts in influencing 

replication and virulence of OPPPs would be extremely valuable.
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Figure 1. 
Schematic of premise plumbing and potential sampling sites for OPPPs
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